New technologies + old tariffs = Problem!

Simon Coates
Concept Consulting
8 March 2017

www.concept.co.nz
The same technologies have dominated electricity for decades

Centralised, economies of scale generation and transport

Simple meters

‘Dumb’ appliances
Now, many new technologies are converging to disrupt this picture.
These technologies represent a huge opportunity...

Cheaper, cleaner transport

Cheaper, cleaner energy

Cheaper, more reliable networks

Lower retail cost-to-serve
... and are fundamentally challenging grid generation

NEM grid demand

- 2.2% p.a. growth on 2000 levels
- 2.2% p.a. growth on 2014 levels
- 3% p.a. decline
- RET review
- death spiral

BEWARE OF DUCK

- Increased ramp
- Significant change starting in 2015
- Potential over-generation
Uptake of some technologies is growing fast (e.g. solar PV)

But are things heading in the right direction for New Zealand?
Good outcomes will only emerge if the new decision-makers – i.e. consumers – have the right incentives and information.

This currently doesn’t appear to be the case.
The structure of most consumers’ tariffs has changed little for a century

- Two-part tariff
 - $/kWh ‘flat’ **variable** charge
 - $/day **fixed** charge

- Simple structure driven by last century’s metering and billing technology

Customers like simplicity, so does having such a simple structure matter?
Flat tariffs send consumers the wrong messages

A flat tariff tells consumers it costs as much to supply them electricity....

... during the middle of the night...
... as it does during a cold winter evening

But the reality is very different

This matters, because consumers have to make energy choices
Until recently, consumers’ energy technology choices were limited

What type of heater?

Whether / how much to insulate your home?

Limited choices

➔ Not too many opportunities to get it ‘wrong’
➔ Outcomes not too grossly inefficient or inequitable
Now, consumers’ energy choices have exploded

New types of heating (and cooling)

New types of lighting

New types of ‘smart’ appliance

But are today’s tariffs resulting in consumers making the wrong choices?

New types of vehicle

Consumers can even build their own power station...

... and operate their own storage facility
Three dimensions to possible poor technology uptake

1) Environmental outcomes

2) Economic consequences

3) Social consequences
 - ‘Cost-shifting’ from technology uptake
 - Bill impacts from move to new tariff structures
First, let’s consider solar
A flat tariff over-rewards solar for reducing consumer demand

- Consumer benefit of solar is avoiding residential tariff when it is generating

- However, value to NZ, is a lot lower
Solar PV is being paid for a service it is not providing

- Solar paid as if it were reducing network and retail costs
 - (Even more so for ‘low-users’)
- But such costs are not reduced.
 - (Indeed, solar may increase both network & retail CTS costs)
Solar + flat tariffs \(\Rightarrow\) cost-shifting

- Under-recovered network & retail costs will be ‘shifted’ onto other consumers through higher tariffs

- Change in consumer bill
- Change in system cost
- Cost shifted to / (from) others

PCETech Analysis v01.xlsxm
This will cost NZ

- Rooftop solar much more expensive than other generation, but flat tariffs encourage uptake

- Potential inefficient cost of $1.2-2.6 bn

Note: None of these technologies avoid the need to build the grid
Solar cost-shifting will particularly hurt the poor

The poorest are most likely to be solar ‘have nots’.

Due to: - Lack of income
- Not owning own home

Uptake of solar by 50% of households
→ average $150/yr bill increase for poorest consumers
But hang on, are we demonising solar? What about other technologies?
Solar stands out for the cost-shifting it causes under flat tariffs

- Reducing demand at peak doesn’t receive full reward.
- Consuming at off-peak costs too much.

Uptake of these other technologies by some would reduce the bills of others.

But current tariffs will suppress uptake of such technologies.
Suppressing EVs and peak-focussed efficiency will be costly

<table>
<thead>
<tr>
<th>Suppressed tech.</th>
<th>Alternative tech.</th>
<th>Economic cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVs</td>
<td>Petrol vehicles</td>
<td>Hundreds of $millions</td>
</tr>
<tr>
<td>Peak-focussed measures (e.g. LEDs, insulation, log-burners, smart appliances, etc.)</td>
<td>Peaking gen. & network capacity</td>
<td>Hundreds of $millions</td>
</tr>
</tbody>
</table>
But surely solar plus batteries will be good, even under a flat tariff?

1) By releasing stored energy during evenings, a battery will reduce peak system costs.

2) But reducing export will reduce a consumer’s bill by a similar amount.

3) The level of cost-shifting for solar is similar under a flat tariff with or without a battery.

Besides, it is the battery that is reducing system costs, not the solar panel.
What are the emissions impacts in NZ?

- EVs represent the biggest de-carbonising opportunity for NZ (petrol displaced by wind)
- PVs neutral (displacing other renewables) ...ish (increased winter fossil gen.)
- Batteries, and peak efficiency, are good (reduce need for peak fossil gen.)
Re-cap so far...

• Current flat tariffs over-encourage some technologies, and suppress others
 → Poor economic, social, and environmental outcomes

• Effect is magnified by the low-fixed charge regulations

If current tariffs are the problem, will moving to cost-reflective tariffs cause new problems?
Moving to cost-reflective tariffs will unwind inherent cross-subsidies

• Two dimensions to current lack of cost-reflectivity
 – Flat tariffs
 – Variablising fixed costs (esp. through low-fixed charge)

• Different consumers will win / lose through unwinding these cross-subsidies

• What are likely range of impacts?
• Will short-term ‘pain’ be outweighed by long-term ‘gain’ from encouraging the right technologies?
• Will the poorest consumers be more likely to be ‘winners’ or ‘losers’?
We looked at bill impact of altered tariff structures on real consumers

• Over 100,000 ICPs, with a year’s worth of half-hourly meter readings (> 2billion data points!)

• Looked at bill impact of move to cost-reflective tariffs
 – Initial bill impact
 – Longer-term impact from altered rates of technology uptake and cost-shifting

• Linking with census data allows examination of social dimension
Cost-reflective tariffs will be good for most customers, particularly low-income, in the long-term

• Approx. $120/yr lower bill in the long-term

• Poorest consumers will particularly benefit from not having costs shifted onto them

• Plus NZ will benefit from the economic and environmental gains

• But ...
Not everyone will be a winner

Although most consumers will be ‘winners’ and enjoy lower bills in the long-term...

Some will be ‘losers’ due to the unwinding of current cross-subsidies
A rapid move to cost-reflective tariffs would result in some significant initial bill impacts

- Unwinding of significant cross-subsidies between customers
- Even though the average bill impact will be zero
What are the regulatory / policy implications?
Is regulatory prescription required for cost-reflective network pricing?

• Some networks think they are incentivised to implement efficient pricing

• Other stakeholders highlight potential barriers
 – Revenue cap *coupled with no real stranding risk* → no commercial incentive to re-structure tariffs
 • Concern in Australia about this effect
 – Some NZ networks selling consumer technology (PV) whose value proposition relies on current pricing structures
 – Different ownership could affect incentives
Will retailers pass through network price signals?

Retail competition

Retailers face arbitrage risk

Retail prices mirror distribution prices

Retail competition

Retailers need to offer simple tariffs to win customers

Retailers re-package distribution prices
Will retailers offer cost-reflective ‘energy’ (gen + retail) charges?

• Customers don’t like:
 – Complexity
 – High fixed charges

• Retailers offer
 – Flat tariffs for generation cost recovery
 – Variable tariffs for recovery of fixed retail costs

• Competition alone seems unlikely to force retailers to only offer cost-reflective tariffs
 – Requires customers to want to move to more complex tariffs
 – Adverse selection – e.g. choosing solar plus flat tariffs – may frustrate this
Some factors may help retailers move to cost-reflective tariffs

• Some network tariff structures (e.g. TOU) less likely to be re-packaged than others (e.g. peak-demand-based)

• TOU network structure may also make a TOU generation structure more likely

• Preventing advanced meter readings from being submitted to the wholesale market in aggregate form

• Getting rid of the low-fixed charge...
Low-fixed charge: A problem if it stays, a problem getting rid of it

- Poorly targeted social assistance.
 - Poorest: ≈ 60% benefit ≈ $200/yr
 ≈ 40% worse off ≈ $180/yr
 - Wealthiest: ≈ 45% benefit ≈ $195/yr

- Now also driving general bill increases for poorest (i.e. exacerbating solar cost-shifting)

- Plus increasing cost-to-serve, and frustrating EV uptake

- However, getting rid of low-fixed charge will be painful
 — Another cross-subsidy to be unwound with associated pain for ‘losers’, even though there will be just as many ‘winners’
What measures may help the transition to cost-reflective tariffs?

- Phasing their introduction? ✓

- Making them voluntary? ✗

- Making them mandatory for some customers?
 - Customers with certain technologies (e.g. PVs or EVs) ✓
 - New properties or moving house ✓

- Targeted assistance for the most vulnerable? ✓
Summary
Getting price signals right is critically important. But challenging!

- Wrong prices to consumers →
 - Worse environmental, economic & social outcomes

- Transitioning to the ‘right’ prices won’t be easy
 - Inevitably winners & losers
 - No strong commercial dynamic on suppliers to move to cost-reflective tariffs

- Need:
 - Appropriate regulatory incentives
 - Broader political & consumer buy-in
The key lesson from Australia, Hawaii, Germany, UK,

Get things right before it is too late!
Thank you
About Concept

• Concept is a specialist energy and economics consultancy that provides services to clients in New Zealand, Australia and the wider Asia-Pacific region.

• Concept provides advice on energy sector policy, business analysis, restructuring, market design, regulatory issues, energy modelling, market analysis, and technical issues.

• Combining economic rigour, leading modelling & analytical skills, and practical backgrounds in the energy sector, Concept consultants are able to provide practical solutions to client problems based on robust analysis.

• For more information, visit www.concept.co.nz or email info@concept.co.nz.

Disclaimer

• The information and opinions expressed in this presentation are believed to be accurate and complete at the time of writing.

• However, Concept and its staff shall not, and do not, accept any liability for errors or omissions in this presentation or for any consequences of reliance on its content, conclusions or any material, correspondence of any form or discussions arising out of or associated with its preparation.